Processing math: 100%
본문 바로가기
전공/신호 및 시스템

2장 Sinusoids (4)_회전 페이저 해석/ 페이저 합/ 오일러 공식/ 복소 진폭/ 사인파의 합/ 페이저 합 규칙 & 증명/ 시간-이동을 위상으로 변환

by 임 낭 만 2023. 3. 19.

Rotating phasor interpretation

  • Consider Z3=Z1Z2, where Z1=r1ejθ1 and Z2=r2ejθ2
  • Z3=r1r2ej(θ1+θ2)

Z3Z1Z2을 곱한 것.

z(t)=XejωtX=Aejφ

  • Where z(t) is the product of the complex number X (called complex amplitude) and ejωt
  • The complex amplitude is also called a phasor.
  • The complex number X can be represented as a vector in the complex plane, where the vector's magnitude. (|X|=A) is the amplitude, and vector's angle (X=φ)
X : complex amplitude (복소 진폭)
복소 진폭은 phasor (페이저)라고도 불림.
복소수 X는 벡터의 크기가 있는 복소수 평면에서 벡터로 표현될 수 있음.
(|X|=A)는 진폭, 벡터의 각도 (X=φ)
  • The complex exponential signal can be written as z(t)=Xejωt=Aejφejωt=Aejθ(t)
    where θ(t)=ωt+φ (Radians)
  • Now, if t increases, the complex vector z(t) will be simple rotate at a constant rate, determined by the radian frequency ω.
  • Thus, the complex exponential signal is rotating phasor.
t가 증가하면 복소 벡터 z(t)는 라디안 주파수 ω에 의해 결정되는 일정한 속도로 단순 회전함.
Xejωt를 곱하면 X가 ω만큼 회전함.

따라서, 복소 지수 신호는 회전 페이저임.

Rotating phasors

  • The plot fig(a) shows the relationship between a single complex rotating phasor and the cosine signal z(t)=ej(tπ4) at the specific time t=1.5π

특정 시간 t=225을 줌. cos225가 됨. 그래프에서 답 보면 -0.7정도가 됨.// 그림은 단일 복소 회전 페이저와 코사인 신호 z(t)=ej(tπ4) 사이의 관계를 보여준다


PHASOR Addition

  • Phasors = Complex Amplitude
    • Complex Numbers represent Sinusoids

z(t)=Xejωt=(Aejφ)ejωt

  • Develop the ABSTRACTION :
    • Adding Sinusoids = Complex Addition
    • PHASOR ADDITION THEOREM

분홍색과 빨간색 더하기


AVOID Trigonometry

  • Algebra, even complex, is EASIER !!!
  • Can you recall cos(θ1+θ2) ?
  • Use : real part of ej(θ1+θ2)=cos(θ1+θ2)

ej(θ1+θ2)=ejθ1ejθ2
=(cosθ1+jsinθ1)(cosθ2+jsinθ2)

=(cosθ1cosθ2sinθ1sinθ2)+j(...)


Euler's FORMULA

  • Complex Exponential
    • Real part is cosine.
    • Imaginary part is sine.
    • Magnitude is one.

ejωt=cos(ωt)+jsin(ωt)


Real & Imaginary Part Plots


POP QUIZ : Complex Amp

  • Fine the COMPLEX AMPLITUDE for :

x(t)=3cos(77πt+0.5π)

  • Use EULER's FORMULA :

x(t)={3ej(77πt+0.5π)}={3ej0.5πej77πt}

X=3ej0.5π


WANT to ADD SINUSOIDS

  • ALL SINUSOIDS have SAME PREQUENCY
  • HOW to GET {Amp,Phase} of RESULT ?

x1(t)=1.7cos(2π(10)t+70π/180)

x2(t)=1.9cos(2π(10)t+200π/180)

x3(t)=x1(t)+x2(t)=1.532cos(2π(10)t+141.79π/180)

주파수가 10Hz로 똑같은 신호 x1(t), x2(t)
x1(t)x2(t)를 더하면?
z=x2+y2
노란색 박스에 써넣은 공식 이용.
1.  x1(t)x2(t)를 위상으로 나타내기.
X1=A1ejφ1=1.7ej70π/180
X2=A2ejφ2=1.9ej200π/180
2. 두 위상을 직교좌표계 형태로 변환.
X1=1.7(cos(70π/180)+jsin(70π/180))=0.5814+j1.5975
X2=1.9(cos(200π/180)+jsin(200π/180))=1.7854j0.6498
3. 실수부와 허수부 더하기.
X3=X1+X2
      =(0.5814+j1.5975)+(1.7854j0.6498)
      =1.204+j0.9477
4. 극좌표계로 다시 변환.
A=[1.7cos(70π/180)+1.9cos(200π/180)]2+[1.7sin(70π/180)+1.9sin(200π/180)]2
ϕ=tan1(yx)=141.79
X3=1.532ej141.79π/180


PHASOR ADDITION RULE

x(t)=Nk=1Akcos(ω0t+ϕk)=Acos(ω0t+ϕ)

Get the new complex amplitude by complex addition

Nk=1Akejϕk=Aejϕ


Phasor Addition Proof

Nk=1Akcos(ω0t+ϕk)=Nk=1{Akej(ω0t+ϕk)}

                                         ={Nk=1Akejϕkejω0t}

                                         ={(Nk=1Akejϕk)ejω0t}

                                         ={(Aejϕ)ejω0t}=Acos(ω0t+ϕ)


POP QUIZ : Add Sinusoids

  • ADD THESE 2 SINUSOIDS :

x1(t)=cos(77πt)

x2(t)=3cos(77πt+0.5π)

  • COMPLEX ADDITION :

1ej0+3ej0.5π


POP QUIZ (answer)

  • COMPLEX ADDITION :

  • CONVERT back to cosine form :

x3(t)=2cos(77πt+π3)


ADD SINUSOIDS

  • Sum Sinusoid has SAME Frequency


ADD SINUSOIDS EXAMPLE


Convert Time-Shift to Phase

  • Measure peak times:
    • tm1=0.0195,tm2=0.0556,tm3=0.0394
  • Conver to phase(t=0.1)
    • ϕ1=ωtm1=2π(tm1T)=70π180
    • ϕ2=200π180
  • Amplitudes
    • A1=1.7,A2=1.9,A3=1.532
f0=10Hz,T0=0.1sec
tm1=ϕT02π=ϕω=0.3920π=0.0195

Phasor Add: Numerical

  • Convert Polar to Cartesian
    • X1=0.5814+j1.597
    • X2=1.785j0.6498
    • sum=X3=1.204+j0.9476
  • Convert back to Polar
    • X3=1.532 at angle 141.79π180
    • This is the sum

왼쪽부터 X2, X3, X1

댓글