Rotating phasor interpretation
- Consider Z3=Z1Z2, where Z1=r1ejθ1 and Z2=r2ejθ2
- Z3=r1r2ej(θ1+θ2)

z(t)=XejωtX=Aejφ
- Where z(t) is the product of the complex number X (called complex amplitude) and ejωt
- The complex amplitude is also called a phasor.
- The complex number X can be represented as a vector in the complex plane, where the vector's magnitude. (|X|=A) is the amplitude, and vector's angle (∠X=φ)
X : complex amplitude (복소 진폭)
복소 진폭은 phasor (페이저)라고도 불림.
복소수 X는 벡터의 크기가 있는 복소수 평면에서 벡터로 표현될 수 있음.
(|X|=A)는 진폭, 벡터의 각도 (∠X=φ)
- The complex exponential signal can be written as z(t)=Xejωt=Aejφejωt=Aejθ(t)
where θ(t)=ωt+φ (Radians) - Now, if t increases, the complex vector z(t) will be simple rotate at a constant rate, determined by the radian frequency ω.
- Thus, the complex exponential signal is rotating phasor.
t가 증가하면 복소 벡터 z(t)는 라디안 주파수 ω에 의해 결정되는 일정한 속도로 단순 회전함.
즉 X에 ejωt를 곱하면 X가 ω만큼 회전함.
따라서, 복소 지수 신호는 회전 페이저임.
Rotating phasors
- The plot fig(a) shows the relationship between a single complex rotating phasor and the cosine signal z(t)=ej(t−π4) at the specific time t=1.5π

PHASOR Addition
- Phasors = Complex Amplitude
- Complex Numbers represent Sinusoids
z(t)=Xejωt=(Aejφ)ejωt
- Develop the ABSTRACTION :
- Adding Sinusoids = Complex Addition
- PHASOR ADDITION THEOREM

AVOID Trigonometry
- Algebra, even complex, is EASIER !!!
- Can you recall cos(θ1+θ2) ?
- Use : real part of ej(θ1+θ2)=cos(θ1+θ2)
ej(θ1+θ2)=ejθ1ejθ2
=(cosθ1+jsinθ1)(cosθ2+jsinθ2)
=(cosθ1cosθ2−sinθ1sinθ2)+j(...)
Euler's FORMULA
- Complex Exponential
- Real part is cosine.
- Imaginary part is sine.
- Magnitude is one.

ejωt=cos(ωt)+jsin(ωt)
Real & Imaginary Part Plots

POP QUIZ : Complex Amp
- Fine the COMPLEX AMPLITUDE for :
x(t)=√3cos(77πt+0.5π)
- Use EULER's FORMULA :
x(t)=ℜ{√3ej(77πt+0.5π)}=ℜ{√3ej0.5πej77πt}
X=√3ej0.5π
WANT to ADD SINUSOIDS
- ALL SINUSOIDS have SAME PREQUENCY
- HOW to GET {Amp,Phase} of RESULT ?

x1(t)=1.7cos(2π(10)t+70π/180)
x2(t)=1.9cos(2π(10)t+200π/180)
x3(t)=x1(t)+x2(t)=1.532cos(2π(10)t+141.79π/180)
주파수가 10Hz로 똑같은 신호 x1(t), x2(t)
x1(t)랑 x2(t)를 더하면?
z=√x2+y2
노란색 박스에 써넣은 공식 이용.
1. x1(t)과 x2(t)를 위상으로 나타내기.
X1=A1ejφ1=1.7ej70π/180
X2=A2ejφ2=1.9ej200π/180
2. 두 위상을 직교좌표계 형태로 변환.
X1=1.7(cos(70π/180)+jsin(70π/180))=0.5814+j1.5975
X2=1.9(cos(200π/180)+jsin(200π/180))=−1.7854−j0.6498
3. 실수부와 허수부 더하기.
X3=X1+X2
=(0.5814+j1.5975)+(−1.7854−j0.6498)
=−1.204+j0.9477
4. 극좌표계로 다시 변환.
A=√[1.7cos(70π/180)+1.9cos(200π/180)]2+[1.7sin(70π/180)+1.9sin(200π/180)]2
ϕ=tan−1(yx)=141.79∘
X3=1.532ej141.79π/180

PHASOR ADDITION RULE
x(t)=∑Nk=1Akcos(ω0t+ϕk)=Acos(ω0t+ϕ)
Get the new complex amplitude by complex addition
∑Nk=1Akejϕk=Aejϕ
Phasor Addition Proof
∑Nk=1Akcos(ω0t+ϕk)=∑Nk=1ℜ{Akej(ω0t+ϕk)}
=ℜ{∑Nk=1Akejϕkejω0t}
=ℜ{(∑Nk=1Akejϕk)ejω0t}
=ℜ{(Aejϕ)ejω0t}=Acos(ω0t+ϕ)
POP QUIZ : Add Sinusoids
- ADD THESE 2 SINUSOIDS :
x1(t)=cos(77πt)
x2(t)=√3cos(77πt+0.5π)
- COMPLEX ADDITION :
1ej0+√3ej0.5π
POP QUIZ (answer)
- COMPLEX ADDITION :

- CONVERT back to cosine form :
x3(t)=2cos(77πt+π3)
ADD SINUSOIDS
- Sum Sinusoid has SAME Frequency

ADD SINUSOIDS EXAMPLE

Convert Time-Shift to Phase
- Measure peak times:
- tm1=−0.0195,tm2=−0.0556,tm3=−0.0394
- Conver to phase(t=0.1)
- ϕ1=−ωtm1=−2π(tm1T)=70π180
- ϕ2=200π180
- Amplitudes
- A1=1.7,A2=1.9,A3=1.532
f0=10Hz,T0=0.1sec
tm1=−ϕT02π=ϕω=−0.3920π=−0.0195
Phasor Add: Numerical
- Convert Polar to Cartesian
- X1=0.5814+j1.597
- X2=−1.785−j0.6498
- sum=X3=−1.204+j0.9476
- Convert back to Polar
- X3=1.532 at angle 141.79π180
- This is the sum

댓글