LECTURE OBJECTIVES
- Sinudoids with DIFFERENT Frequencies
- SYNTHESIZE by Adding Sinusoids
$x(t)=\sum_{k=1}^{N}A_{k}cos(2\pi{\color{Red}f_{k}}t+\varphi_{k})$
- SPECTRUM Representation
- Graphical Form shows DIFFERENT Freqs
주파수가 다른 사인파 : 합하여 합성
그래프 형식은 다른 주기를 나타낸다.
MOTIVATION
- Synthesize Complicated Signals
- Human Speech
- Vowels have dominant frequencies
- Application : computer generated speech
- Can all signals be generated this way?
- Sum of sinusoids?
- Human Speech
복잡한 신호의 합성
- 인간의 음성
- - 모음에는 지배적인 주파수가 있음. / 응용 프로그램: 컴퓨터에 의해 생성된 음성
- 모든 신호를 이렇게 생성할 수 있나?
- - 사인파의 합?
SPECTRUM Interpretation
- Cosine = sum of 2 complex exponentials :
MEGATIVE FREQUENCY
- Is negative frequency real?
- Doppler Radar provides an example
-
Police radar measures speed by using the Doppler shift principle
-
Let’s assume 400Hz ↔ 60 mph
-
+400Hz means towards the radar
-
-400Hz means away (opposite direction)
-
Think of a train whistle
-
경찰 레이더는 도플러 시프트 원리를 사용하여 속도를 측정함.
400Hz ↔ 60mph라고 가정.
+400Hz는 레이더 방향을 의미함.
-400Hz는 떨어져 있음을 의미함.(반대방향)
기차의 기적을 생각하기.
SPECTRUM of SINE
- Sine = sum of 2 complex exponentials:
$Asin(7t)=\frac{A}{2j}e^{j7t}-\frac{A}{2j}e^{-j7t}=\frac{1}{2}Ae^{-j0.5\pi}e^{j7t}+\frac{1}{2}Ae^{j0.5\pi}e^{-j7t}\\-\frac{1}{j}=j=e^{j0.5\pi}$
- Positive freq. has phase = $-0.5\pi$
- Negative freq. has phase = $+0.5\pi$
GRAPHICAL SPECTRUM
EAMPLE of SINE
SPECTRUM → SINUSOID
- Add the spectrum components :
Gather $(A, \omega , \phi )$ information
- DC is another name for zero-freq component
- DC component always has $\phi =0 $ (for real $X(t)$)
Add Spectrum Components
Simplify Components
Use Euler's Formula to get REAL sinusoids :
$Acos(\omega t+\varphi )=\frac{1}{2}Ae^{-j\varphi }e^{j\omega t}+\frac{1}{2}Ae^{-j\varphi }e^{j\omega t}$
FINAL ANSWER
So, we get the general form:
$x(t)=A_{0}+\sum_{k=1}^{N}A_{k}cos(2\pi f_{k}t+\varphi _{k})$
Summary : GENERAL FORM
$\\x(t)=A_{0}+\sum_{k=1}^{N}A_{k}cos(2\pi f_{k}t+\varphi _{k})
\\x(t)=X_{0}+\sum_{k=1}^{N}\Re \left\{X_{k}e^{j2\pi f_{k}t} \right\}$
$\\x(t)=X_{0}+\sum_{k=1}^{N}\left\{\frac{1}{2}X_{k}e^{j2\pi f_{k}t}+\frac{1}{2}X_{k}e^{-j2\pi f_{k}t} \right\}$
댓글