COMPLEX NUMBERS
- To solve $z^{2}=-1$
- $z=j$
- Math and Physics use $z=i$
- Complex number : $z=x+jy$
$i$대신 $j$ 사용
y가 imaginary number, x가 real number
x가 $cos\theta$ , y가 $sin\theta$ 이므로 $cos\theta + jsin\theta = e^{j\theta}$
$z = re^{j\theta}= rcos\theta + jrsin\theta$
PLOT COMPLEX NUMBERS
COMPLEX ADDITION = VECTOR Addition
POLAR FORM
- Vector Form
- Length = 1
- Angle = $\theta$
- Common Values
- $j$ has angle of $0.5\pi$
- -1 has angle of $\pi$
- $-j$ has angle of $1.5\pi$
- also, angle of $-j$ could be $-0.5\pi=1.5\pi-2\pi$
- because the PHASE is AMBIGUOUS
POLAR ↔ RECTANGULAR
- Relate $(x,\; y)$ to $(r, \;\theta)$
$r^{2}=x^{2}+y^{2}$
$\theta = tan^{-1}(\frac{y}{x})$
$x = rcos\theta $
$y = rsin\theta $
Euler's FORMULA
- Complex Exponential
- Real part is cosine.
- Imaginary part is sine.
- Magnitude is one.
$e^{j\theta}=cos(\theta)+jsin(\theta)$
$re^{j\theta}=rcos(\theta)+jrsin(\theta)$
COMPLEX EXPONENTIAL
$e^{j\omega t}=cos(\omega t)+jsin(\omega t)$
- Interpret this as a Rotating Vector
- $\theta=\omega t $
- Angle changes vs. time
- ex : $\omega=20\pi\;rad/s $
- Rotates $0.2\pi$ in 0.01 secs
1초에 $20\pi$니까 0.01초에는 $0.2\pi$임.
$\omega=\frac{\theta}{t} $임.
cos = REAL PART
Real Part of Euler's (오일러 공식에서 실수부를 다음과 같이 표현함)
$cos(\omega t)=\Re \left\{e^{j\omega t} \right\}$
General Sinusoid
$x(t)=Acos(\omega t+\varphi )$
So,
$Acos(\omega t+\varphi )=\Re \left\{Ae^{j(\omega t+\varphi )} \right\}=\Re \left\{Ae^{j\varphi }e^{j\omega t} \right\}$
REAL PART EXAMPLE
$Acos(\omega t+\varphi )=\Re \left\{Ae^{j\varphi }e^{j\omega t} \right\}$
Evaluate :
$x(t) = \Re \left\{-3je^{j\omega t} \right\}$
Answer :
$x(t) = \Re \left\{(-3j)e^{j\omega t} \right\}=\Re \left\{3e^{-j0.5\pi}e^{j\omega t} \right\}=3cos(\omega t-0.5\pi)$
-3j는? : imaginary line의 아래로 3만큼 내려간 하나의 벡터 (-3인 벡터)
-3은 $1.5\pi=-0.5\pi$ 따라서 $3e^{-j0.5\pi}$
COMPLEX AMPLITUDE
General Sinusoid
$x(t) = Acos(\omega t+\varphi )=\Re \left\{Ae^{j\varphi}e^{j\omega t} \right\}$
Complex AMPLITUDE = X ↕
$z(t) = Xe^{j\omega t}\;\;\;\;\;\;\;\;\;\;\;X=Ae^{j\varphi }$
Then, any Sinusoid = REAL PART of $Xe^{j\omega t}$
$x(t) = \Re \left\{Xe^{j\omega t} \right\}=\Re \left\{{Ae^{j\varphi }e^{j\omega t}} \right\}$
Real and imaginary parts of the complex exponential signal
$z(t) = 20e^{j(2\pi(40)t-0.4\pi)}=20e^{j(80\pi t-0.4\pi)}$
$=20cos(80\pi t-0.4\pi)+j20cos(80\pi t$$-0.9\pi$$)$
$j20sin(80\pi t-0.4\pi)$을 $cos$으로 바꾸어서 $j20cos(80\pi t-0.9\pi) $가 된 것.
댓글