Phase shift and time shift
- The phase shift parameter $\varphi $ determines the time locations of maxima and minima.
$5cos(0.3\pi t+1.2\pi)$
TIME - SHIFT
- In a mathematical formula, we can replace $t$ with $t-t_{m}$
$x(t-t_{m})=Acos(\omega (t-t_{m}))$
- Then the $t=0$ point moves to $t=t_{m}$
- Peak value of $cos(\omega (t-t_{m}))$ is now at $t=t_{m}$
TIME-SHIFTED SINUSOID
$x(t+4)=5cos(0.3\pi(t+4)) =5cos(0.3\pi (t-(-4)))$
PHASE ↔ TIME-SHIFT
- Equate the formulas : (좌변 : 시간) (우변: 위상)
$Acos(\omega (t-t_{m})) = Acos(\omega t+\varphi )$
- and we obtain: $-\omega t_{m}=\varphi $
- or, $t_{m}=-\frac{\varphi }{\omega }$
SINUSOID from a PLOT
- Measure the period, T
- Between peaks or zero crossings
- Compute frequency : $\omega = \frac{2\pi}{T}$
- Measure time of a peak : $t_{m}$
- Compute phase : $\phi=-\omega t_{m} $
- Measure height of positive peak: A
$(A,\;\omega , \;\phi )$ from a PLOT$
$T=\frac{0.01sec}{1\;period}=\frac{1}{100}$ → $\omega = \frac{2\pi}{T} =\frac{2\pi}{0.01}=200\pi$
$t_{m}=-0.00125sec$ → $\varphi = -\omega t_{m}=-(200\pi)(t_{m}) =0.25\pi$
PHASE is AMBIGUOUS
- The cosine signal is periodic
- period is 2$\pi$
$Acos(\omega t+\varphi +2\pi)=Acos(\omega t+\varphi )$
- Thus adding any multiple of $2\pi$ leaves $x(t)$ unchanged
if $t_{m} = -\frac{\varphi }{\omega }$, then
$t_{m_{2}} = \frac{-(\varphi +2\pi)}{\omega }=-\frac{\varphi }{\omega }-\frac{2\pi}{\omega }=t_{m}-T$
Sampling and plotting sinusoids
$x(t) = 20cos(2\pi(40)t-0.4\pi)$
- Sampling period → $Ts=0.005$ sec.
- There are five samples/cycle.
- Straight lines rather than the smooth cosine function → $Ts=0.0025$ sec.
- The choice of $Ts$ depends on the frequency of the cosine signal.
(a) -0.03s ~ 0.045s 이므로 주기는 0.045 - (-0.03) = 0.075 이고 샘플링이 16개 이므로 샘플링 주기는 0.075/16 = 약 0.005 sec이다. 매끄러운 코사인 함수보다는 직선 →
(b) 한 주기당 5개의 샘플이 있으므로 0.005*5 = 0.0025 따라서 주기가 0.0025sec이다.
댓글